博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hbase操作(shell 命令,如建表,清空表,增删改查)以及 hbase表存储结构和原理...
阅读量:6096 次
发布时间:2019-06-20

本文共 8242 字,大约阅读时间需要 27 分钟。

hot3.png

a目录

两篇讲的不错文章

http://www.cnblogs.com/nexiyi/p/hbase_shell.html

http://blog.csdn.net/u010967382/article/details/37878701?utm_source=tuicool&utm_medium=referral

o     

o     

hbase操做

hbase web操作

访问地址 http://hmaster:60010

hmaster的ip配置在$HBASE_HOME/conf/hbase-site.xml中

ip映射成主机名

    在env/hosts中配置

    在windows系统中的C:\Windows\System32\drivers\etc目录下的hosts文件中配置)

hbase shell 基本操作:

hbase shell 进入hbase console命令

whoami 查用户

help查看基本命令集合

help command 查看命令帮助

list看库中所有表

status 查看当前运行服务器状态

version 版本查询

exits '表名字' 判断表存在

 

hbase shell中删除为 ctrl + backspace(单按删除键不好使)

1)建表

    语法:create <table>, {NAME => <family>, VERSIONS => <VERSIONS>}

具体命令

    hbase(main):004:0> exists 'test'

    hbase(main):005:0> create 'test','cf'

 

    hbase> create 't1', {NAME => 'f1', VERSIONS => 5}

    hbase> create 't1', {NAME => 'f1'}, {NAME => 'f2'}, {NAME => 'f3'}

    省略模式建立列族

    hbase> create 't1', 'f1', 'f2', 'f3'

    指定每个列族参数

    hbase> create 't1', {NAME => 'f1', VERSIONS => 1, TTL => 2592000, BLOCKCACHE => true}

    hbase> create 't1', 'f1', {SPLITS => ['10', '20', '30', '40']}

    hbase> create 't1', 'f1', {SPLITS_FILE => 'splits.txt'}

    hbase> # Optionally pre-split the table into NUMREGIONS, using

    hbase> # SPLITALGO ("HexStringSplit", "UniformSplit" or classname)

    hbase> create 't1', 'f1', {NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}

    设置不同参数,提升表的读取性能。

    create 'lmj_test',

        {NAME => 'adn', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROWCOL', REPLICATION_SCOPE => '0', COMPRESSION => 'SNAPPY', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', ENCODE_ON_DISK => 'true', IN_MEMORY => 'false', BLOCKCACHE => 'false'},

        {NAME => 'fixeddim', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROWCOL', REPLICATION_SCOPE => '0', COMPRESSION => 'SNAPPY', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', ENCODE_ON_DISK => 'true', IN_MEMORY => 'false', BLOCKCACHE => 'false'},

        {NAME => 'social', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROWCOL', REPLICATION_SCOPE => '0', COMPRESSION => 'SNAPPY', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', ENCODE_ON_DISK => 'true', IN_MEMORY => 'false', BLOCKCACHE => 'false'}

    每个参数属性都有性能意义,通过合理化的设置可以提升表的性能

     create 'lmj_test',

        {NAME => 'adn', BLOOMFILTER => 'ROWCOL', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', COMPRESSION => 'SNAPPY', BLOCKCACHE => 'false'},

        {NAME => 'fixeddim',BLOOMFILTER => 'ROWCOL', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', COMPRESSION => 'SNAPPY', BLOCKCACHE => 'false'},

        {NAME => 'social',BLOOMFILTER => 'ROWCOL', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0',COMPRESSION => 'SNAPPY', BLOCKCACHE => 'false'}

2)建表后查看表:describe

 

    得出

    {NAME => 'lmj_test',

    FAMILIES =>

    [

    {NAME => 'adn', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROWCOL', REPLICATION_SCOPE => '0', COMPRESSION => 'SNAPPY', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', ENCODE_ON_DISK => 'true', IN_MEMORY => 'false', BLOCKCACHE => 'false'},

                {NAME => 'fixeddim', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROWCOL', REPLICATION_SCOPE => '0', COMPRESSION => 'SNAPPY', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', ENCODE_ON_DISK => 'true', IN_MEMORY => 'false', BLOCKCACHE => 'false'},

                {NAME => 'social', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROWCOL', REPLICATION_SCOPE => '0', COMPRESSION => 'SNAPPY', VERSIONS => '1', TTL => '15768000', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', ENCODE_ON_DISK => 'true', IN_MEMORY => 'false', BLOCKCACHE => 'false'}

            ]

        }

3)清空表:truncate ‘lmj_test’

disable 'xxx'

truncate 'xxxx'

enable 'xxxx'

4)删除表:

        分两步,首先disable 'lmj_test',然后drop 'lmj_test'

5)修改表结构:先disable后enable

        alter 't1', {NAME => 'f1'}, {NAME => 'f2', METHOD => 'delete'}

        例如:修改表test1的cf的TTL为180天

            hbase(main)> disable 'test1'

            hbase(main)> alter 'test1',{NAME=>'body',TTL=>'15552000'},{NAME=>'meta', TTL=>'15552000'}

            hbase(main)> enable 'test1'

6)对表中记录的操作(4种行操作)

    put 增加一行

        语法:put <table>,<rowkey>,<family:column>,<value>,<timestamp>

        其中,timestamp可以系统默认,也可以自己设定,如

 

         put 't1', 'r1', 'c1', 'value', ts1

         put 'lmj_test','00001','adn:adn_3','aaa',1432483200000

         put 'lmj_test','00001','fixeddim:appcategory_1','1',1432483200000

         put 'lmj_test','00001','fixeddim:interest_15','100',1432483200000

 

    get查询对应数据(可以指定行、列族、列、版本)

        get 'lmj_test','000000104257464',{TIMESTAMP=>1432483200000}

 

    delete 删除数据

        删除指定行中指定列:

            delete <table>, <rowkey>,  <family:column> , <timestamp>(必须指定列名,删除其所有版本数据)

            delete 'lmj_test','000000104257464','f1:col1'

        删除整行数据(可不指定列名):

            deleteall <table>, <rowkey>,  <family:column> , <timestamp>

            deleteall 'lmj_test','000000104257464'

 

    scan 扫描全表,指定过滤条件,返回对应行

        scan 'lxw_hbase', {LIMIT => 1}

            其他条件继续添加在大括号中

    以上4个操作类是 org.apache.hadoop.hbase.client的子类,参考官网API查看详细信息

 

    count统计表中记录数

         count 'lxw_hbase', {INTERVAL => 100, CACHE => 500}

         #每100条显示一次,缓存区为500

7)表操作权限

    给用户分配对每个表的操作权限,有RWXCA五种,对应READ, WRITE, EXEC, CREATE, ADMIN

    grant 'liu_mja','RW','lxw_hbase'    #分配给用户liu_mja表lxw_hbase的读写权限

    还可以 查看权限

        user_permission 'lxw_hbase'

    收回权限

        revoke 'liu_mja','lxw_hbase'

8)命名空间

    关系数据库系统中,命名空间namespace是表的逻辑分组,同一组中的表有类似的用途。

    以下引自:

    (http://blog.csdn.net/u010967382/article/details/37878701?utm_source=tuicool&utm_medium=referral)

 

    hbase的表也有命名空间的管理方式,命名空间的概念为即将到来的多租户特性打下基础:

        配额管理( Quota Management (HBASE-8410)):限制一个namespace可以使用的资源,资源包括region和table等;

        命名空间安全管理( Namespace Security Administration (HBASE-9206)):提供了另一个层面的多租户安全管理;

        Region服务器组(Region server groups (HBASE-6721)):一个命名空间或一张表,可以被固定到一组 regionservers上,从而保证了数据隔离性。

 

    命名空间可以被创建、移除、修改。

    建表时可以指定命名空间,格式如下:<namespace>:<table>

    #Create a namespace

    create_namespace 'my_ns'

 

    #create my_table in my_ns namespace

    create 'my_ns:my_table', 'fam'

 

    #drop namespace

    drop_namespace 'my_ns'

 

    #alter namespace

    alter_namespace 'my_ns', {METHOD => 'set', 'PROPERTY_NAME' => 'PROPERTY_VALUE'}

 

    预定义的命名空间:

        有两个系统内置的预定义命名空间

        hbase   系统命名空间,用于包含hbase的内部表

        default 所有未指定命名空间的表都自动进入该命名空间

    使用默认的命名空间

        #namespace=default and table qualifier=bar

        create 'bar', 'fam'

    指定命名空间

        #namespace=foo and table qualifier=bar

        create 'foo:bar', 'fam'

hbase原理及时间戳管理介绍

分布式的、面向列的开源

hdfs文件存储
MR处理数据
zookeeper做协同服务

hbase

数据以表存储

 表含行、列,列分为列簇(family)

如图,

key1,key2,key3是三条记录的唯一row key值,
column-family1,column-family2,column-family3是三个列族
每个列族下包括几列,如列族 column-family1包括两列column1和column2

  row这个维度用于region切分

   column则不用于分片,和row不同的是,一个row中多个columns的put或者delete操作是一个原子事务(同一个原子事务中不能同时put和 delete)

   Row key和column key(HBase中也称为qualifier)是bytes类型,而时间维度的key则是long integer类型,典型使用 java.util.Date.getTime()或者System.currentTimeMillis()来做为时间维度的key。

 唯一的确定一个cell数据:由row key1、column-family1、column1找到值集,值集按时间戳t排列,按有效期取得每个对应时间的值t1:abc,t2:gdxdf

   每个cell的值可能包含多个版本,以timestamp索引,倒序排列,默认为最近一个版本,时间戳最大

 

 (1) Row Key:nosql数据库中记录的主键,在 hbase内部保存为字节数组(字典序排列存储),  任意字符串(最大长度是 64KB)。读有位置相关性,经常一起读的行要放到一起存储。

       注意:int类型数据的字典序是1,10,100,118,11,12,128,15,16。恢复成int数值的自然序,在行键的左侧全部填充0(左填充0)。

 

 (2)  列族 column family:是schema的一部分(而列不是),必须在用表前先定义。列名以列族为前缀,

  create 'test','cf'

    put 'test','001','cf:c1','a1',1432483200000

    put 'test','002','cf:c2','a2'

    put 'test','001','cf2:c1','a1',1432483200000    报错ERROR: Unknown column family! Valid column names: cf:*

 

 (3) cell: 无类型,全部存储为字节码

 (4)  时间戳 timestamp管理(多版本数据有效期设置)

     每个cell的值可能包含多个版本,以timestamp索引,倒序排列(最近数据在最前面,默认取最近的数据)。时间戳的类型是 64 位整型。时间戳可以自动生成,也可以自己设定。避免数据版本冲突则时间戳必须具有唯一性。

      版本具有有效期,超过有效期则删除。有两种方式回收版本,称为 GC(垃圾收集)

            列值版本的保存数量限制,通过两种方式设置

1, version设置保留版本数。超过则删除最老的,

  创建Column Family时通过HColumnDescriptor.setMaxVersions(int versions)设置,这是Column Family级别,设置是即时生效,读取时读不了,但物理删除还是需要等到major compact操作中执行。设置为1只保留一个

2,TTL(Time To Live)设置保留时间。超过TTL则删除,默认是forever。

通过 HColumnDescriptor.setTimeToLive(int seconds)可以设置TTL。读操作如Get/Scan等是即时生效,但物理清除要等到major compact。一行row中所有cell的TTL都失效,则删除整行,HBase不显示建立或删除行,行中cell有值且有效,行就存在。

注意,version中,major compact不进行,则删除最近版本后,失效版本可以重新恢复为有效值

put的时间戳

默认使用的是currentTimeMillis。应用也可以使用自定义的值来做为每个列的 timestamp,只需要是一个long integer的值即可,不一定是时间
而get默认返回timestamp最大值的数据
delete的时间戳
1. 删除某个timestamp之前所有老版本
(指定timestamp比row中最新的版本大,则相当于删除整行,不是立即删除元数据,而是等到major compact时)
2. 删除某个timstamp点的版本

 

例子:通过sqoop将sqlserver中的2亿条数据同步到hdfs上用了45m,将hdfs中目录下的数据写到hbase中用了2小时。

count命令查询表中的行记录

201128233 row(s) in 15508.4900 seconds

=> 201128233

共花费4小时

 

 

转载于:https://my.oschina.net/iioschina/blog/806979

你可能感兴趣的文章
vue实现点击展开,点击收起
查看>>
如何使frame能居中显示
查看>>
第k小数
查看>>
构建之法阅读笔记三
查看>>
Python/PHP 远程文件/图片 下载
查看>>
【原创】一文彻底搞懂安卓WebView白名单校验
查看>>
写给对前途迷茫的朋友:五句话定会改变你的人生
查看>>
并行程序设计学习心得1——并行计算机存储
查看>>
JAVA入门到精通-第86讲-半双工/全双工
查看>>
bulk
查看>>
js document.activeElement 获得焦点的元素
查看>>
abb画学号
查看>>
C++ 迭代器运算
查看>>
【支持iOS11】UITableView左滑删除自定义 - 实现多选项并使用自定义图片
查看>>
day6-if,while,for的快速掌握
查看>>
JavaWeb学习笔记(十四)--JSP语法
查看>>
【算法笔记】多线程斐波那契数列
查看>>
java8函数式编程实例
查看>>
jqgrid滚动条宽度/列显示不全问题
查看>>
在mac OS10.10下安装 cocoapods遇到的一些问题
查看>>